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ABSTRACT 

Magnetic curves are particle trajectories traced under the influence of magnetic field. 

It encompasses a huge family of monotonic varying curvature curves. Recently, 

magnetic curves with linear logarithmic curvature graph (LCG) has been derived and 

denoted as log-aesthetic magnetic curve (LMC), whose characteristics are similar to 

that of log-aesthetic curves (LAC). This paper elaborates aesthetic shapes through 

analyzing the particle charge function 𝑞(𝑡) of general representation of magnetic 

curves which dictates the monotonicity of curvature profile. This paper also proves 

that LMC or the generalized version of LMC is not the only representation of the 

family of magnetic curve with monotonic curvature profile.  The investigation of the 

fairness of planar magnetic curves uses conventional shape interrogation methods 

and LCG. The result provides an insight to control the shape function 𝑞(𝑡) for the 

generation of fair magnetic curves and elucidate their properties for practical design 

purposes. 

 

Keywords: Aesthetic curves, spirals. 

 

1. Introduction 

Farin et. al., 2002, defined Computer Aided Graphic Design (CAGD) 
as the construction and representation of free-form curves, surfaces or 
volumes. Although there are various types of developed curves in CAGD, 
few meets the high aesthetic need in automobile and aircraft designs due to 
lack of smoothness and controllability. Conventional curves used in such 
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industries are Bézier and Non-Uniform Rational B-Spline (NURBS) curves. 
These curves have drawbacks in their curvature formulas because natural 
spirals have much simpler formulas than those of Bézier and NURBS 
(Gobithaasan, 2013). Furthermore, the obvious oscillation in their curvature 
plot makes it less visually pleasing compared to aesthetic curves and more 
effort is needed to reduce the oscillation of their curvatures.  

 
Miura, 2006, introduced a general formula of aesthetic curves which 

is later renamed as log-aesthetic curve (LAC). LAC is described by Yoshida 
and Saito, 2006, as a curve with linear Logarithmic Curvature Graph (LCG) 
and is deemed as high quality curves. They also classified and listed 
members of the aesthetic curves in standard form which includes clothoid, 
logarithmic spiral and circle involute and studied the relationship between 
the slopes of straight line of their respective LCG and their shapes. They 
showed that the shape of the curve changes as the value of LCG slope 
varies. Later, Gobithaasan and Miura proposed the general form of the 
LAC’s formula known as the Generalized LAC (GLAC).  It has an extra 
degree of freedom compared to LAC which results in increased flexibility. 
Recently, a comprehensive study of aesthetic curves for CAGD is 
elaborated in Miura and Gobithaasan, 2014. 

 
Xu and Mould, 2009, proposed a magnetic curve for artistic designs. 

It is a particle tracing method that produces curves of constantly varying 

curvature. These curves are usually spirals or helices. They further 

demonstrated its applications in computer graphics via rendering graphics 

such as stylized trees, hairs, water and fire. A review of the formulation of 

magnetic curve and deriving magnetic curves with constant LCG, denoted 

as Log-aesthetic Magnetic Curves (LMC) has been done by Wo et. al., 

2014,  recently. Since the particle charge of magnetic curve is an arbitrary 

real function, various fair curves with monotone curvature can be created 

for design purposes.  The main purpose of this paper is to determine the 

particle charge functions 𝑞(𝑡) and their practicality for CAD systems such 

that a wider range of monotone curvature curves can be used for design 

purposes. 

 

2. Fundamentals of Magnetic Curves 

A magnetic curve is the resulting trajectory of the particle under the 

influence of Lorentz Force (Xu and Mould, 2009): 
   

𝐹⃗ = 𝑚
𝑑𝑣⃗

𝑑𝑡
= 𝑞(𝑣⃗ × 𝐵⃗⃗),   (1) 
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where 𝑚, 𝑞, 𝑣⃗ and 𝐵⃗⃗ are the particle mass, charge and velocity vector, and 

magnetic induction vector respectively. A parametric magnetic curve in 𝐑3 

space is derived as 
 

𝐶(𝑡) = ∫ ( 𝑣⊥cos 𝜃(𝑡) , 𝑣⊥  sin 𝜃(𝑡) , 𝑣∥) 𝑑𝑡
𝑡

𝑡0

. (2) 

 

The parameter 𝑡 is a time parameter while 𝑣⊥ and 𝑣∥ are magnitudes of the 

components of 𝑣⃗ , which are perpendicular and parallel to 𝐵⃗⃗  respectively 

(see Figure 1). The function 𝜃(𝑡) is the tangential angle of (2), which can be 

written as 𝜃(𝑡) = ∫ 𝜔(𝑡) 𝑑𝑡
𝑡

𝑡0  
, where 

 

𝜔(𝑡) =
𝐵

𝑚
𝑞(𝑡). (3) 

 

The term 𝑡𝑜𝑟𝑔 denotes the time when the position of the particle is at the 

origin (0,0) with tangent vector 〈𝑣⊥, 0〉. Equation (3) is the gyro-frequency 

of the trajectory whereas 𝑞(𝑡) is the particle charge function and can be any 

arbitrary real function. B is the magnitude of magnetic induction vector 𝐵⃗⃗. 

We set 𝑣∥ = 0 and fix 𝐵⃗⃗ such that 𝐵⃗⃗ is parallel to the 𝑧-axis. This is done in 

effort to limit the curve 𝐶(𝑡) to the 𝑥-𝑦 plane. Thus 𝐶′(𝑡) = 𝑣⊥⃗⃗ ⃗⃗⃗. Figure 2 

depicts a magnetic curve along with its velocity vector and tangent angle. 

 

The radius of gyration, or also known as radius of curvature of a planar 

magnetic curve is given as: 
 

𝜌(𝑡) =
𝑠′(𝑡)

𝜃′(𝑡)
=

𝑣⊥

𝐵|𝑞(𝑡)|
. (4) 

 

Generally, magnetic curve have the arc length: 
 

𝑠(𝑡) = 𝑣⊥(𝑡 − 𝑡0) (5) 

 

Thus, it is arc length-parameterized when 𝑣⊥ = 1. The sign of the function 

𝑞(𝑡)  governs the direction of the particle acceleration. For example, a 

positively signed 𝑞(𝑡) produces a magnetic curve which turns towards the 

left. If the sign of 𝑞(𝑡) changes to negative, the curve turns toward the right.  

When 𝑞(𝑡) is a constant, the curve is a circle in 𝐑2 or a helix in 𝐑3 space. 
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Figure 1: The direction of 𝐵⃗⃗, 𝑣, and two components of 𝑣; 𝑣⊥⃗⃗⃗⃗⃗ and 𝑣∥⃗⃗⃗⃗ . 

 

 

 
 

Figure 2: Magnetic curve, its velocity vector 𝑣⊥⃗⃗ ⃗⃗ ⃗ = 〈𝑣𝑥, 𝑣𝑦〉  and tangential angle 𝜃(𝑡1). 

 

3. LCG Gradient of Magnetic Curve 

LCG ( Gobithaasan and Miura, 2014; Yoshida et. al., 2010) is the 

analytical representation of Logarithmic Distribution Diagram of Curvature 

(LDDC) which represents the relationship between interval of radius of 

curvature and arc length frequency. The equation of LCG is given below: 
 

𝐿𝐶𝐺(𝑡) = {log 𝜌(𝑡) , log
𝜌(𝑡)𝑠′(𝑡)

𝜌′(𝑡)
}. (6) 

 

The gradient of LCG is 
 

𝜆(𝑡) = 1 +
𝜌(𝑡)

𝜌′(𝑡)2 (
𝜌′(𝑡)𝑠′′(𝑡)

𝑠′(𝑡)
− 𝜌′′(𝑡)). (7) 

 

𝑣∥⃗⃗⃗⃗  

𝑣⊥⃗⃗⃗⃗⃗ 

 𝐵⃗⃗ 𝑣 

𝑡0 

𝑣𝑥⃗⃗⃗⃗⃗ 

𝑣𝑦⃗⃗⃗⃗⃗ 𝑣⊥⃗⃗ ⃗⃗ ⃗ 

𝜃(𝑡1) 
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A curve is classified as LAC if its LCG gradient is a constant, denoted by 

 . In general, magnetic curve has the following LCG gradient: 
 

𝜆(𝑡) =
𝑞(𝑡)𝑞′′(𝑡)

𝑞′(𝑡)2
− 1, (8) 

 

after substituting (4) and (5) into (7). Hence the particle charge function 

𝑞(𝑡) affects directly both radius of curvature and LCG gradient. 
  

4. Magnetic Curve with Monotone Curvature 

It is discussed in the previous section that 𝑞(𝑡) has direct control over 

a magnetic curve’s curvature profile. Thus, monotonicity of the function 

𝑞(𝑡) guarantees the monotonicity of the curvature profile, (𝑡) =
1

𝑞(𝑡) 
. For 

generality, 𝑞(𝑡) is set to be 𝑔(𝑡) + 𝑙 (
𝑣⊥

𝐵
) where 𝑙 ∈ 𝐑 is the 𝑦- interception 

of the curvature profile and 𝑔(𝑡) as an arbitrary monotone function:  
 

𝜅(𝑡) =
𝐵

𝑣
𝑞(𝑡) =

𝐵

𝑣
𝑔(𝑡) + 𝑙. (9) 

 

Therefore, the slope of the curvature can be manipulated via parameters 𝐵 

and 𝑣, while 𝜅(𝑡) can be shifted by manipulating 𝑙. An inflection point 

(𝜅(𝑡) = 0) may or may not occur depending on the value of 𝑙.  
 

Three categories of functions for 𝑞(𝑡)  are studied in this chapter. These are 

the elementary algebraic (polynomials), transcendental (exponential, 

hyperbolic, logarithms, trigonometric and power functions) and two types 

of conic functions (ellipse and parabola).  
 

4.1   Polynomials 

Magnetic curve with polynomial curvature functions can be referred as 

polynomial spirals as in Delingette et al., 1991, since they are of the same 

form. These spirals are used to generate trajectories of G
2
-continuity while 

minimizing the path energy. These curves have a high degree of freedom 

but the monotonicity of the curvature is not guaranteed for polynomials of 

degree three and above. Hence, calling these curves as polynomial spiral is 

rather misleading. In order to guarantee curvature monotonicity, the 

derivative of the polynomial curvature must be inspected and manipulated 

such that 𝜅′(𝑡) ≠ 0 for all 𝑡 ∈ 𝐑. Figure 3 shows an example of magnetic 
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spiral of monotone polynomial curvature, 𝑞(𝑡) = 0.375 𝑡2 +
2

3
 𝑡3 +

0.125 𝑡4. 

 

 
 

Figure 3: A magnetic curve (left) with parabolic curvature function (middle), and LCG gradient function 

(right). The inputs are 𝑙 = −2; 𝐵 = 0.2; 𝑣 = 1; 𝑡 ∈ (0,7]. 

 
The magnetic curve in  

Figure 3 has an inflection point near 𝑡 = 1 which is also the real root of the 

polynomial equation 𝜅(𝑡) = 0.2 (0.375 𝑡2 +
2

3
 𝑡3 + 0.125 𝑡4) − 2  for 

𝑡 ≥ 0. The inflection point occurs at 𝑡 = 0 when 𝑙 = 0. If  𝑙 > 0, then the 

curve will be a C-shaped curve. 
 

4.2   Elementary Transcendental Function 

When 𝑙 = 0, the curves of exponential and power curvature functions forms 

the family of LMC with constant LCG gradient, where 
 

𝑞𝐺𝐿𝑀𝐶(𝑡) = {
𝑡−𝛽 ,        𝛽 ∈ 𝐑,

𝑒𝑡 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (10) 

 

However, 𝑞𝐺𝐿𝑀𝐶(𝑡) stated below: 
 

𝑞𝐺𝐿𝑀𝐶(𝑡) = {
𝑡−𝛽 +

𝑣
𝐵

𝑙,        𝛽 ∈ 𝐑,

𝑒𝑡 +
𝑣
𝐵

𝑙,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (11) 

 

is a general case of (10) where the curve traced with (11) is denoted as 

generalized LMC (GLMC). The bound for the parameter 𝑡 ∈ 𝐑3  for the 

curve of (11) is 𝑡 ∈ (0, ∞)  for 𝛽 > 0 , 𝑡 ∈ [0, ∞)  for 𝐵 < 0  and 𝑡 ∈
(−∞, ∞) otherwise. The LCG of (11) is given below: 

 

  𝜆𝐺𝐿𝑀𝐶(𝑡) = {

𝐵+𝑡𝛽𝑣𝑙(1+𝛽)

𝐵 𝛽
,   𝛽 ≠ 0,

𝑒𝑡 𝑣𝑙

𝐵
,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (12) 
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Examples of these curves are shown in Figure 4. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 4: GLMC (left) with curvature function (middle) and LCG gradient function (right). The inputs 

are shown in TABLE 1. 

 
TABLE 1: Inputs for Figure 4 

 

Figure 𝑞𝐺𝐿𝑀𝐶(𝑡) 𝛽 𝐵 𝑣 𝑙 𝑡0 

       

(a) 𝛽 ∈ 𝐑 0.6 0.8 1.0 -0.35 2.0 

(b) 𝛽 ∈ 𝐑 -2.0 1.0 1.0 -3.00 0.0 

(c) 𝛽 ∈ 𝐑 1.0 1.0 1.0 -0.40 0.3 

(d) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 - 0.8 1.0 -0.60 0.0 
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Setting 𝑙 < 0  allows GLMC to have inflection points when their LMC 

counterparts could not. Examples are given in Figure 4 (a), (c) and (d). 

Inflection point of a GLMC with 𝛽 > 0 approaches 𝑡 = 0 as 𝑙 decreases. It 

moves further away from the origin as  𝑙 decreases for 𝛽 < 0 and 1/𝛽 = 0. 

Since 𝜅(𝑡) is monotonic, there can be only one inflection point on a GLMC. 

 

Other monotone elementary transcendental functions that can be substituted 

as particle charge function 𝑔(𝑡)  are logarithms, hyperbolic and inverse 

tangent functions. Trigonometric functions are not studied in this paper due 

to its periodic nature, albeit the bounds of 𝑡  can be set such that the 

functions are strictly monotone in their respective bounds. The boundary for 

𝑡 is (0, ∞) for (𝑡) = ln 𝑡  , the curve of logarithmic curvature profile. An 

example is given in Figure 5 5. 

 

 
 

Figure 5: A magnetic curve (left) with curvature function (middle) and LCG gradient function (right). 

The inputs are 𝑙 = −1; 𝐵 = 1.2; 𝑣 = 2; 𝑡 ∈ (0,10], with 𝑡0 = 1.  

 

Hyperbolic functions are symmetric, thus they are monotonic for 𝑡 > 0 or 

𝑡 < 0. The bounds for 𝑡 are (−∞, 0) ∪ (0, ∞) for hyperbolic cosecant and 

cotangent and (−∞, ∞) for hyperbolic sine. The example shown in Figure 6 

has the function 𝑔(𝑡) = sinh 𝑡.  

 

 
 

Figure 6: A magnetic curve (left) with hyperbolic sine curvature function (middle) and LCG gradient 

function (right). The inputs are are 𝑙 = −0.8; 𝐵 = 1.2; 𝑣 = 1; 𝑡 ∈ [−4,4], with 𝑡0 = 0.5.  
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The inflection point of the magnetic curve in Figure 6 occurs near 𝑡 = 1. 

There are three pieces of LCG for the curve, the first one increasing, 

reaches a maximum near 𝑡 = −2.5 , then decrease to a minimum near 

𝑡 = 0.5 before increasing again. This indicates that the curve is initially 

divergent at 𝑡 = −4 , gradually converging afterwards and becomes 

divergent again.  
 

4.3   Ellipse and Parabola 

Half ellipse and parabola are monotone functions for either 𝑡 ≥ 0 or 𝑡 ≤ 0. 

These functions are symmetrical, thus either the upper half or the lower half 

of the ellipse or parabola can be assigned as the function 𝑔(𝑡) to produce 

monotone curvature. The resulting elliptic and parabolic curvature functions 

are given below 
 

𝜅𝑒𝑙𝑙𝑝(𝑡) =
𝐵

𝑣
√

𝑏2(1 − 𝑡2)

𝑎2
+ 𝑙 (13) 

 

𝜅𝑝𝑎𝑟𝑎(𝑡) =
𝐵

𝑣
√

𝑏2(1 + 𝑡2)

𝑎2
+ 𝑙 (14) 

 

The parameter 𝑡  for parabola is not bounded, however it is bounded by 

[−𝑎, 𝑎].  The curves of (13) and (14) are presented in Figure 7 and  

Figure 8 along with their respective curvature and LCG gradient plots. 

 

 
 

Figure 7: A magnetic curve (left) with elliptic curvature function (middle), and LCG gradient function 

(right). The inputs are 𝑎 = 10; 𝑏 = 4;  𝑙 = 0; 𝐵 = 1; 𝑣 = 1; 𝑡 ∈ [0,10], with 𝑡0 = 8.  
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Figure 8: A magnetic curve (left) with parabolic curvature function (middle), and LCG gradient function 

(right). The inputs are 𝑎 = 214; 𝑏 = 207;  𝑙 = −0.5; 𝐵 = 1; 𝑣 = 1; 𝑡 ∈ [0,30].  

 

5. Conclusion 

It can be concluded that the LCG gradient for magnetic curves with 

monotone curvatures do not consistently follow a pattern by inspecting the 

𝑞(𝑡) functions in the previous section.  Some of the particle charge function 

generates an almost linear LCG while some shows some obvious oscillation 

in the LCG gradient function. Beside generalized LMC, magnetic curve 

with polynomial and elliptic curvature are good candidates for designing 

fair shapes as they have more degree of freedom compared to the other 

functions discussed in this section. It is shown that there are various spirals 

that can be generated with elementary monotonic functions and proven that 

LMC is a part of a bigger family of magnetic curves with monotone 

curvature. In general, the monotonicity of 𝑞(𝑡) generates various magnetic 

spirals that can be classified as quasi-aesthetic curves (Yoshida and Saito, 

2007). 
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